Vulnerable plaque update

Pathophysiology of ACS assessed by OCT

Department of Cardiovascular Medicine Wakayama Medical University, Japan

Progression of atherosclerotic plaque

Different Types of Vulnerable Plaque

(Naghavi M, et al. Circulation 2003;108:1664-1672)

Criteria for defining vulnerable plaque

(Naghavi M, et al. Circulation 2003;108:1664-1672)

Major criteria

- Active inflammation
 - (monocyte/macrophage and sometimes T-cell infiltration)
- Thin cap (< 65 µm) with large lipid core
- Endotherial denudation with superficial platelet aggregation
- Fissued plaque
- **Stenosis > 90%**

Minor criteria

- Superficial calcified nodule
- Glistening yellow
- Intraplaque hemorrhage
- Endotherial dysfunction
- Outward (positive) remodering

OCT vs histology

Fibrous plaque

Fibro-calcific plaque

Fibro-lipidic plaque

Red & white thrombus

Red thrombus

White thrombus

Mixed thrombus

Protrusion mass with shadow

Protrusion mass without shadow

Protrusion mass with & without shadow

Kume T, Akasaka T, et al (Am J Cardiol 97:1713-1717, 2006) Kubo T, Akasaka T, et al. (J Am Coll Cardiol 50:933-939,2007)

Plaque rupture (Plaque disruption)

Distribution of disrupted fibrous-cap thickness

Plaque ulceration

Erosion

Comparison of plaque Images in AMI (OCT vs. CAS vs. IVUS) n=30

(Kubo T, Akasaka T, et al. J Am Coll Cardiol 50:933-939,2007)

	OCT	*CAS	**IVUS	*p	**p
Plaque Rupture (%)	73	47	40	0.035	0.009
Ulceration (erosion) (%)	23	3	0	0.022	0.005
Thrombus (%)	100	100	33	1.000	<0.001
Red thrombus (%)	100	90	-	0.076	-
White thrombus (%)	100	93	-	0.150	-
TCFA(≦65µm) (%)	83	-	-	-	-
Fibrous cap thickness (µm)	49±21	-	-	-	-
LRP (Lipid Arch>180°) (%)	83	-	67	-	NS

TCFA; Thin Cap Fibro-Atheroma, LRP; Lipid Rich Plaque

OCT findings in unstable angina

OCT findings in 115 cases with unstable AP

Mizukoshi M, et al. Am J Cardiol 2010, 106: 323-328)

Clinical manifestation & Fibrous cap thickness, MLA of the culprit lesion

Thin-cap fibroatheroma (TCFA)

TCFA is thought to be vulnerable based on histological studies, and possibility to identify TCFA has been demonstrated by several pilot OCT studies.

OCT findings of macrophages Low $M\phi$ High Mo 250 µm **O**CT **CD68** (macrophage)

Tearney GJ et al. Circulation, 107:113-119, 2003

Identification of macrophage

Extremely high signal with rapid attenuation on the surface of the vessel wall or within fibrous tissue might demonstrate macrophage accumuration.

Corresponding Images of OCT and Angioscopy

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008)

Angioscopy vs OCT

Plaque color vs lipid size

Plaque color vs fibrous cap thickness

Wakayama Medical University

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008)

Criteria for defining vulnerable plaque

(Naghavi M, et al. Circulation 2003;108:1664-1672)

Major criteria

• Active inflammation

(monocyte/macrophage and sometimes T-cell infiltration)

- Thin cap (< 65 µm) with large lipid core
- Endotherial denudation with superficial platelet aggregation
- Fissued plaque
- **Stenosis** > 90%

Minor criteria

- Superficial calcified nodule
- Glistening yellow
- Intraplaque hemorrhage
- Endotherial dysfunction

Outward (positive) remodering

Micro-channels in non-culprit plaques

03/05/2008 10:28:05

Kitabata H, et al. Am J Cardiol. 2010;105:1673-1678

Microchannel within plaque (Vasavasorum)

Kitabata H, et al. Am J Cardiol. 2010;105:1673-1678

Vessel Wall Neovascularization in Atherosclerosis

Atherosclerosis

(J Am Coll Cardiol 2007;49:2073-80)

Microchannel within plaque (Vasavasorum)

Kitabata H, et al. Am J Cardiol. 2010;105:1673-1678

The presence of microvasculature (vasavasorum) may demonstrate the plaque vulnerability.

Unstable AP

(Tanimoto T, et al. Circ J 2009 ; 73:187-189) Wakayama Medical University

Unstable AP

difficult to identify the plaque prone to rupture even in prospective study.

(Tanimoto T, et al. Circ J 2009 ; 73:187-189)

OCT findings in each atheromatous stage

OCT is a high-resolution imaging modality for plaque characterization.

Progression of atherosclerotic plaque

Libby, P. Circulation 2001;104:365-372

LDL vs Atheroma volume

OCT assessment of non-culprit lesion (47y.o. male)

(Takarada S, et al. Atherosclerosis 202: 491-497, 2009)

Changes of plaque characteristics by statin (Takarada S, et al. Atherosclerosis 202: 491-497, 2009) Baseline **Follow-up** p **Statin group** Fibrous cap thickness (µm) 114 ± 83 162 ± 75 < 0.01 Lipid arc (degrees) 132 ± 37 116 ± 23 <0.01 Non-statin group (Control group) Fibrous cap thickness (µm) 129 ± 54 117 ± 78 ns Lipid arc (degrees) 129 ± 37 128 ± 28 ns

Methods

Consecutive 160 NSTEACS patients who underwent emergency PCI

Exclusion: 3 left main, 6 CHF, 8 CKD (Cr>1.5 mg/dl) 12 lipid-lowering therapy

110 patients could be evaluated by IVUS & OCT

9-month follow-up period

28 patients withdraw

82 patients were enrolled in this study

58 patients (71%) received statin during follow up

OCT and IVUS study : <u>Measured plaque :</u> Non-culprit site atheroma (>10mm proximal or distal to the PCI site) <u>Analysis</u> Fibrous-cap thickness (OCT) Total atheroma volume (IVUS)

Laboratory examination : LDL-C,HDL-C,hs-CRP (The days of discharge, & the time of follow-up)

Representative case of plaque stabilization : 66yo, male

3

3

nm

1.5

primary PCI

Total atheroma volume=63mm

9-months follow-up

Total atheroma volume=61mm

Fibrous-cap thickness=310µm

(Takarada S, et al. JACC Interv. 2010;3: in 766-772) Wakayama Medic

1.0

0.5

0.0

g'0

0.0 17:11:07 0 10/09/2

a'V

Fibrous-cap thickness=90µm

The correlation between the lipid profile and the % change of fibrous-cap thickness (FCT) and total atheroma volume (TAV).

(Takarada S, et al. JACC Interv. 2010;3: 766-772)

Univariable and multivariable logistic regression analyses as predictors of plaque stabilization

	univariable analysis : OR(95% CI)	p-value	multivariable analysis :OR(95%CI)	p-value
age,y	0.52 (0.93-1.04)	p=0.60		
gender	1.38 (0.46-5.4)	p=0.86		
HLP	0.91(0.33-2.51)	p=0.86		
HT	0.53 (0.17-1.09)	p=0.08	0.72 (0.22-1.7)	p=0.73
DM	0.56 (0.14-0.97)	p=0.04	0.74 (0.23-2.4)	p=0.84
statin	3.57 (1.66-12.6)	p=0.002	1.45 (1.15-15.9)	p=0.02

"Plaques stabilization" was defined by decreasing TAV and increasing FCT. In the present study, 31 plaques (39%) stabilized.

(Takarada S, et al. JACC Interv. 2010;3:766-772)

Cardiovascular event-free survival probability according to high or low hs-CRP and LDL cholesterol levels

JUPITER trial

N Engl J Med 2008;359:2195-207.

Ridker PM et al. N Engl J Med 2002;347:1557-65

Case 56 y.o. male

- This gentleman had chest pain on exertion from March 20, 2010.
- The frequency and severity of chest pain increased gradually .
- He was admitted to our hospital with a diagnosis of unstable angina (changing pattern) on April 12, 2010.
- He had multiple coronary risk factors such as hypertension, dyslipidemia, diabetes mellitus, family history and smoking.

ECG on admission (56 y.o. male)

Case 1. 56 y.o. male

Labo data

WBC:	11070	LDL-C:	143
CRP:	0.42	HDL-C:	36
CK:	77	TG:	241
CK-MB:	5	BS:	298
AST:	30	HbA1c:	9.0
ALT:	33	Creat:	0.5
LDH:	156	e-GFR:	68.6

UAP (56 y.o. male)

LAD in UAP (56 y.o. male)

LCx in UAP (56 y.o. male)

Case 1. 56 y.o. male

<u>CAG (4/13)</u> #3: 50%, #6: 90%, #11:75%

PCI to the LAD lesion

Guiding catheter: 6F Profit SS 3.5, Guide wire: Runthrough

- 1. OCT (C7) to the LAD
- 2. Pre-dilatation by a 3.5×12mm semi-compliant balloon
- 3. Stent implantation (3.5×25mm BMS)
- 4. Post-dilatation (18 atm)
- 5. OCT(C7) to the LAD & LCx

Staged PCI to the LCX lesion (4/20)

- 1. OCT (C7) to LCx
- 2. Stent implantation (3.5×18mm BMS)
- 3. Post-dilatation (18 atm)

LCx one week later in UAP (56 y.o. male)

Conclusions

By higher resolution (10µm) and superior ability of tissue characterization, OCT may allow us to

• assess coronary lesion morphology in ACS in detail.

• identify various types of vulnerable plaque correctly.

 estimate the effects of various drugs on plaque characteristics.

assess the pathophysiology of coronary artery.

Effect of pitavastatin on plaque morphology(WHHL-MI rabbit)

[Method] WHHL-MI rabbit, Pitavastatin 0.5mg/kg/day, Valsaltan 5mg/kg/day or both for 8 weeks.

Imanishi T, Akasaka T, et al.:Hypertens Res Vol. 31, No. 6 (2008) Wakayama

ピタバスタチンのプラーク形成抑制作用(WHHL-MIウサギ)

Imanishi T, Akasaka T, et al.:Hypertens Res Vol. 31, No. 6 (2008)

Wakayama Medical University

Difference between IVUS and OCT

IVUS

